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Abstract Local correlations between Linetic events of cation/vacancy ordeing in framework 
smctu~es lead 10 ‘panid conservation’ of the order parameter. Mixing nonsonserved and 
conserved kinetic processes leads to a bifurcation behaviour wilh uniform states for mainly 
non-consewed order parameter and periodic pattern formation if more h 1 out of 12 steps is 
conserved. Possible correlations with experimental observations are discussed. 

1. Introduction 

Recent experimental studies have shown that the kinetic behaviour of cation ordering in 
framework structures is correctly described by kinetic order parameters Q which have the 
same structural meaning as heir equilibrium equivalents. Furthermore, the driving force 
of the kinetic process was identified as being virtually identical, beside some non-local 
parameters, to the excess Gibbs free energy G of the thermodynamic phase transition. 
Typical examples are as follows. 

(i) Vacancy ordering in YBa2CupCl-8 where Q = (s) is the occupancy [I-31 of oxygen 
on two competing lattice sites and H = JijStSj; transient tweed patterns leading to stripe 
formation were found experimentally 14-71 and via computer simulation [8-121. 

(ii) AI, Si ordering in Na feldspar where Qod describes the degree of Al. Si ordering. 
Qd ‘slaves’ another, structural order parameter Q (od = order disorder). The rate law is 

where G is the equilibrium excess Gibbs free energy of Q d  with relaxed Q. Transient 
tweed structures were observed [13]. 

(iii) Non-convergent ordering of AI and Si in K feldspar. The non-symmetry-breaking 
order parameter Q, follows 

. with G = -HQ,+;A(T-T,)Q,+.. . . 
No transient domain pattern was found 1141. 

Q = $exp(G,/kT)aC/ag 
with no transient domain pattern observed [15-161. 

A similar connection between equilibrium behaviour and kinetic processes as in these 
ordering processes is also expected beyond the relaxational Landau-Kalatnikov behaviour 

Qod + exp(AG,/kT)aC(Q&, Q)/aQ,,j with AGa = AG: + 6Q2 

Qt = ~ +  exp(AG,/kT)aC/aQ, 

(iv) AI.Mg ordering in omphacite, following 

G, =.G: -eQ’ G = $A(T - T,)Q’+ $Q6 

0953-8984/93~74775+10$07.50 @ 1993 IOP Publishing Lld 4775 
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for displacive ferroelastics and ferroelectrics. The characteristic time scale in displacive 
systems is the phonon time scale which makes the experimental observation of transient 
states excessively difficult [ 171. 

In the case of cation ordering in framework structures, it has been shown that the 
essential distinction between various rate behaviours is related to the smallest step that an 
order parameter (or the equivalent state variable) can make in order to reach equilibrium 
[l8-21]. Two extreme cases have been well documented firstly the Ising model in which 
the step size is SQ = 1/N, where N is the number of spins in the system. In this case 
the Glauber rate law for non-conserved order parameters and the Kawasaki rate law for 
conserved order parameters are applicable [22-301. Secondly, in ferroelastic systems, the 
minimum step size is SQ (< 1,”. This situation also holds for m-state Potts models 
(m > 3) 1311. In these cases, continuous rate laws of the type 

are a good approximation [8,17,31]. The new parameter introduced in this rate law is 
cc which measures the importance of the order parameter conservation. The two limiting 
cases are easily identified. For tc = 0 there is no conservation and we find a Landau- 
Kalatnikov form of rate equation (note, however, that the rate laws are supposed to describe 
essentially the full Q-dependence of the kinetic process even far from equilibrium whereas 
the Landau-Kalatnikov equation only describes relaxations of states close to equilibrium 
into the equilibrium state). We use here the term ‘Landau-Kalatnikov’ in a formal sense 
to indicate that the kinetic operator L ( A )  in (1) is simply the inverse time constant. For 
cc = e the order parameter is fully conserved and the rate law is in the lowest order of the 
Cahn-Hilliard type [32-351. 

From a purely mathematical viewpoint it is clear that one cannot apply perturbation 
theory to describe the full range of fC > 0 as a perturbation of 5; = 0 because the perturbation 
enters as a singular perturbation of derivatives higher than those contained in the starting 
equation. Here we are interested in the physical picture of the breakdown of the perturbation 
approach. 

It IS important for the following discussion to notice the different structure of the discrete 
and continuous rate laws as far as the conservation behaviour is concerned Only in the 
case of the continuous rate law can the conservation behaviour be described by the kinetic 
operator L(A)  with a continuous scaling between the fully conserved to the fully non- 
conserved limits. This paper is now concerned with the question: ‘What is the influence of 
small contributions of conservation to an essentially non-conserved rate behaviour?’ 

Before we discuss possible answers to this question, let us clarify the term 
‘conservation’. Conserved order parameters generally describe processes such as chemical 
exsolution, spinodal decomposition etc. where the external conshaint to the kinetic rate 
law is the invariance of the chemical composition. In other words, any change of the order 
parameter somewhere in the system has to be compensated by another change in the opposite 
direction somewhere else. In the language of Ising models, changes of the spin coordinate 
occur via flip-flop motion for Conserved cases and via independent flip motions for non- 
conserved cases. The same behaviour holds for continuous order parameters: changes of  the 
order parameter on a local scale can be correlated with changes in the opposite direction in 
another part of the crystal (flipflop) if some degree of conservation exists. One sees clearly 
here the relative nature of such constraints: it is very likely that over small distances inside 
the crystal such correlated flipflop behaviour is relevant, whereas over large distances such 
correlations die out. In these cases, the conservation behaviour is ‘partial’ and we wish to 
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explore what consequences such partial conservation has for the macroscopic rate behaviour 
[29,301. 

In view of the importance of partially  conserved kinetic behaviour for Complex 
structures, such as many minerals and other materials encountered in earth sciences and 
material sciences, let us illustrate possible mechanisms with a typical example. Many 
framework structures, such as feldspars and cordierite, contain as structural units simple 
polyhedra which, in tum, consist of primitive'simplexei such as tetrahe&. These are the 
smallest relevant units for structural phase transitions, kinetic processes and because of their 
relative rigidity with respect to deformation and relaxation, they are often called 'rigid units'. 
The analysis of structural phase transitions in terms of the response of these rigid units, i.e. 
the 'rigid unit modes' has been one of the most fruitful recent developments in the fieldpf 
p h i s  transitions 136-381. Let us now consider a hexagonal framework of such tetrahedral 
rigid units. e.g. similar to the cordierite structure (figure 1) l39-401. The essential process 
underlying the kinetics of AI, Si ordering in this structure is related to the dishibution  of AI 
in such a way that two AI positions occupy two opposite comers of each'hexagon and also 
have the maximum distance between A1 of different hexagons. The only way to achieve 
this distribution is within an orthorhombic or monoclinic system, whereas the disordered 
structure is hexagonal. In this example the smallest unit that is relevant for the kinetic 
process is one hexagon with three states for the maximum AI,AI distance, six states for 
distances with one Si between them and six states for neighbouring A1,AI arrangements. 
The smallest unit has, thus, fifteen states with three energy levels which split due to the 
coupling with the surrounding lattice. This scenario leads to a phase transition which has 
been described quantitatively in terms of Landau theory [41]. Let us now turn to the kinetic 
process. The great number of states [IS, 191 and the coupling of the order parameter with 
the lattice strain lead to the applicability of mean-field theories [l] and the rate equation 
(1). If each of the elementary kinetic steps occurs independently, then the interaction with 
the mean field may drive the system into equilibrium via a non-conserved rate behaviour 
(.$ = 0). There are two obvious processes that may lead to strong correlations, however. 
The first is that each breaking of a chemical bond in one hexagon can trigger a similar bond 
breaking in the next hexagon within the constraints of the'hexagonal makix. This will lead 
to a reshuffle of the AI positions such that the change in one hexagon is compensated in 
another hexagon, so the total effect on the lattice is minimal. The second possible process 
is that the bond breaking leads t6a separation of AI from the hexagon. In this case, AI goes 
into an interstitial site and'diftbses through the structure. Recombinkion will occur with an 
empty site which is not further away than the diffusion length. If this site was also vacated 
by AI, nothing has changed. If, on'the other hand, the site was vacated by Si, an effective 
change of order parameter has occurred via an exchange reaction. This exchange reaction 
is described by an order parameter flow with a conserved rate equation. This conserved 
process is in excess of the underlying non-conserved kinetic process with the same effective 
driving force.. The total rate behaviour is partially conserved, therefore. 

These two processes of correlated bond breaking and conserved exchange reactions (and 
possible other, yet unknown atomistic processes) lead to a mixture of conserved and non- 
conserved kinetics. Their driving force may be identical and the most simple rate equation 
describing such a scenario is given in (1). 

We can now 'sharpen up' our original question and a s k  'Can we treat the additional 
correlations, i.e. the small admixtures of conservation, as a small perturbation of the 
otherwise non-conserved rate law?' It is the purpose of this paper to argue that the agswer 
to this question is 'no'. It will be shown that perturbation theory breaks down even for 
rather small correlations which leads to a bifurcation between a regime with individual kink 

~ . The kinetics of partially conserved order parameters 
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Figure 1. Sketch of the cordierite st~cfure. me relevant kinetic 
ordering process relates to the dishbution of two aluminium atoms 
over the six available tetrahedra positions per ring. The rings are 
intercmmected via the TI tetrahedra The orthortwmbic ordering 
requires maximum AI-AI distances in each ring and uanslational 
symmehy between the rings ( C o w s y  A Pumis. Cambridge). 

domains and oscillatory pattem formation. 

2. The rate equation 

The general rate law in ( I )  can be written for small values of &, i.e. close to the non- 
conserved limit, in lowest order and in an isowpic medium as [18] 

Q = - . q - I  ~ 65c 2 A - &5:52A2)aG/aQ A = Vz. (2) 

G = fAQ’+ l B Q 4  4 + I 281 VQI2. (3) 

Q = - L ( l - L  2 I 2 2  2 

For the excess Gibbs free energy, a Landau expression is assumed 

Using the total derivatives of the order parameter, we find 

(4) 

In anisotropic media the Laplace operators A have, in general, directional dependent 
prefactors because the ‘easy direction’ of the kink formation (last Laplacian) is not 
necessarily identical with the direction of maximum correlation (e.g. the ‘easy’ diffusion 
direction in the first Laplacian). These directional effects will be discussed in a separate 
paper. Here we project the spatial dependence of Q on a one-dimensional model with 

r 65c A - ~6~ 5 A ) ( A Q  + BQ’ - gAQ).  

A = a2/ar2. (5) 

Equation (4) is now renormalized with respect to the time variable 

f’ = t/(rlAl) (6) 
and the order parameter 

@=e/- (A < O )  (7) 
leading to 
~ = @ - @ ’ + ( 8 / I A l - ~ 5 ~ ) A @ - ~ 5 ~ 5  I 2 2  A 2 @ - ( ~ 5 ~ g / l A l ) A z @  

+ 5:@(A$)’ + i6:@2A@. (8) 
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The term in the first bracket is the only prefactor that may change sign as a function of the 
control parameter. In ferroelastic framework structures, the thickness of a domain wall is, 
besides a factor of the order unity, w = 

represents the scaling length of the conservation and we 

- 

< 10 tf at T << T,. 
The characteristic length 

focus first on the limit of & < W. In this case, the prefactor is (w + (l/&)&)(w - ~ 

(l/&)&) > 0. Rescaling the length as 

x = r / ( W Z  - I a b  2 ) 1/2 

4P = 6 - 63 + 61, - Y4zxr*r + 86; + €62& 

y = [ p  F, / (wZ-&)]+Ti i i t c t  / ( w 2 - & )  ’ 0  

6 = &(w’ - 6;) > 0 

(9) 
we find the rescaled rate equation 

(10) ~ 

with 

(11) 1 2 2  1 2 2  1 2 2  1 2 2  

and ~ ~ 

6. (12) 
d 

lpt, = - dt‘ 
Close to a second-order phase transition, w diverges as IT - Tc1‘/2 and y decays as T, - T. 
The terms representing the partial conservation disappear at Tc and the conservation becomes 
thermodynamically irrelevant. At T << T,, we estimate w = 10 tf, (1/4%)Ec = 5 A, and 
y = a. The expected numerical valuesof y are for these length s d e s  between zero at T,  
and a at low temperatures. The maximal values of S and E are, using the same estimates, 
2 and 1, respectively. 

E = f&(W.” - t;) > 0 

3. Analytical solutions and marginal stabilities 

The limiting case y = E = S = 0 has a relevant solution for boundary conditions 4 = 1 at 
x = cc and @ = -1 at x = -CO kinks (6 = tanhx) representing twin boundaries [42-461. 
The growth of the stable state 6 = 1 into matrix of unstable 6 = 0 material under isothermal 
conditions is also described by kinks. Their velocity is determined by the marginal stability 
of the progressing front with respect to fluctuations 147-521. This marginal velocity is v* = 
2 for (10). In units of the Landau potential, U = (2/s)(-gA)1/2 which decay with exponent 
f for T -+ Tc. 

For small values of y ,  this situation will not change (note 6 = 0 at the leading edge 
of the propagating wavefront). The dispersion is identical with that of the well-studied 
extended Fisher-Kolmogorov (EFK) equanon [53-541 namely 

~ ~ 

Re(o) = 1 + k: - k: - y(k: - 6k:k: + k:) (13) 
where k, = Re(k) and ki = Im(k). 

The maximum growth rate is determined by the maximum of Re@) with respect to 
k ,  at k, = k: for marginal stability of the wavefront. For y c A, one finds ki = 0, so 
only individual kinks will propagate. In this case, the partial conservation does change 
the effective parameters of the kinetic equation but does not modify the essential physical 
behaviour. This situation changes dramatically when y approaches and increases further. 
For y z 6. the individual kinks are replaced by nearly periodic kink-antikink pattem 
(figure 2). Their repetition length h is approximately 

h = ( 8 ~ / 3 ) ( 2 y / A ) ” ~ ( 2  + 24y - A)/[12(y - A) - A ]  (14) 
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Figure 2. Snapshots of a moving wavefront (from right 10 IefI). On the RHS the initial condition 
is the uniform slate with the equilibrium order paramem Qw This phase gmws into the unstable 
phase with Q = 0 via pattem formation. The growth is descrited by (10) with (a)  y = 0.3 and 
S = E  = 0 ,  ( b ) S  = 1 . 5 , ~  = 3 and (CIS = 3 . 6  =6. The incRaseofS and L leadsto arounding 
of edges but has little influence on the general patfem formation 

where 

A = (7 + 24y)'I2 - 3. (1.5) 

The repetition length diverges at the bifurcation point [S3] as 

At y >> A, the repetition length depends only weakly on the numerical value of y with 
A = 250 8, at y = 4 and the parameters estimated as given before. 

At this point we notice that the transient state produced similar periodic pattems for 
a large number of functions aG(@)/a$ [ S I .  In the case considered above, a sample was 
quenched from @ = 0 to @ = 1. Experimentally, a similar pattem also evokes for shock 
heating from q5 = 1 to @ < 1, although a direct comparison with experiment is difficult 
because we have so far ignored the directional dependences of the prefactors of the two 
A-operators. A particular effect in ferroelastic materials is that one finds two orthogonal 
propagation directions and, consequently, the formation of tweed pattern rather than periodic 
twins. In figure 3 two typical examples are shown. A crystal of Na feldspar was shock 
heated and the tweed microstructure shown in figure 3(a) with A 2: 200 8, occurs for all 
intermediate times (0.2 < Q < 0.8). In figure 3(b) the similar pattern for quenched Mg 
cordierite is shown. In both examples, the pattem formation is due to Al. Si ordering. 

4. Cases with tc similar to and larger than w 

So far the discussion has been concerned with the limiting case of very weak conservation. 
For cases where 6 is still so small that the series expansion of sinh(fk)/tk is a good 
approximation one can expect many conserved steps to occur inside the conservation volume 
defined by .$. In this case the condition w > tC is no longer fulfilled. The sign of the first 
Laplacian then changes to negative or the term disappears for w = (l/&)tc. 

In this special case [56-571 thk propagating wavefront follows 

@; = $ - $3 - Y * @ Z X X X  + 6*@@: + €*& (17) 
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Figure 3. Tweed IniaoSrrUctures as hansient panems during Le come of a kinetic cation 
(dis)ordering experiment: (a) Na feldspar, AI, Si disordering, (b) cordierite, AL Si ordering. 
(Counesy A Putnis, Cambridge.) 

with 

Y *  = LpW'  6 C  + '&2 Izo c 6' = c; E* = " 2  2 C .  (18) 
Equation (17) is similar to those describing propagation of instabilities in the direction 

parallel to the long roll axis in Rayleigh-Bhard cells. These fronts also produce kinks so 
that the microshucture consists again of a kink-antikink pattem. 

The non-singular case of a negative term in the second order spatial derivative is similar 
to the dynamics transient pattem formation in liquid crystals, e.g. the Fr&dericksz, instability 
[58]. In order to illustrate the close connection, let us start from the kinetic equation to the 
field + ( r )  = [n(r) ,  u(r), u ( r ) ]  where n is the usual director field, U is the velocity and U 

describes the position of the molecules. The kinetic equation is written as 

+t.c=~,,(+)acfa+,++, i = 1 ,  ..., 9. (19) 
The last term is Langevin noise and L,, is the kinetic operator. In nematic liquid 

crystals, the kinetic operator does not only desaibe the dissipation of the order parameters 
but also the non-dissipative coupling between the components of rp. The diagonal terms are 



4182 E K H Salje 

dissipative, the non-diagonal terms describe the coupling between several order parameters. 
The equivalence to the partial conservation in the original equation (1) is now introduced 
via the non-diagonal coupling terms, whereas the uncoupled equations would not describe 
the pattern formatton at all. Translaung this phenomenon into the language Of Structural 
phase transitions, it means that the local kinetic correlations, which are essential for the 
partial conservation, are not necessarily brought about by a mechanism which is related 
to the driving order parameter itself, but is due (in this model) to the coupling to another 
degree of freedom which, per se, is not involved in the mechanism of the equilibrium phase 
transition. 

It has been shown that the kinetic equation (19) can be diagonalized in terms of the 
angular dependence of n only: 

Transforming q5 into Fourier space, with the amplitude e,, ( t ) ,  the equivalent kinetic equation 
of 6, ( t )  is in lowest order 

nx(x ,  z) = cos@)(x, z) n,(x ,  z )  = sin(q5)(x, 2 )  n, = 0. (20) 

eq,w = (I/v)[a - b d ] e q S ( t )  + vq,(t). (21) 

s,, = (eql(t),e-q,(t)) (22) 

Sqr = (2/?)[a - b$]SqI@) f (4/y)kBT/Y. (23) 

7 = Y - C f  ( ~ c  - q a  Q-’) (24) 

The structure factor with anchoring boundary conditions in lowest order is 

with the time dependence 

The kinetic prefactor depends itself on the wavevector via 

which leads for realistic values of the viscosity parameters and early stages of the rate 
equation (12) with small Q-values to 

Q = qr/q,O 

I /?  ( I / Y ) ( ~  -~Q’/Ys.)  = U Q ) .  (25) 
The results for strong magnetic fields h (i.e. quenching deep into the low-symmetry 

phase) have been analysed numerically 1601. It was found that the uniform state for the 
initial conditions decays after the mean first passage time into a pattem with a well defined 
wavevector close to the maximum of the dispersion relation. 

So far we have considered the pattern formation. As transient states, these patterns 
disappear when the system approaches equilibrium. The main question now concems the 
decay channels for the pattem destruction. In case of fully conserved order parameters, this 
problem relates to coarsening. For non-conserved order parameters the destruction of twin 
boundaries is essentially due to the formation of junctions between walls and the pulling back 
of needle-shaped domains [42]. It appears that the driving mechanism for the destruction 
of tweed pattern is also the bending of domain walls around junctions and the subsequent 
retraction of bend walls (e.g. as needle tips) [42]. None of these atomistic processes is 
readily described by the ID kinetic rate equations discussed so far. For tC 4 w,  the pattem 
appears to be numerically stable although exponentially small wall-wall interactions lead 
to the formation of ripple states [53,61]. 

The more straightforward pattem with tc c w has been shown to be unstable with 
logarithmic increase of the (A )  0: In t mean value of the repetition length [59,62,63]. 
This decay lay is dependent on long-distance exponential interaction between walls. Such 
interactions are shown to exist dynamically between Fkedericksz walls 1-51], and their 
existence is also generally assumed for shuctural twin walls 1.521 although their physical 
origin is less than clear. 
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