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Abstract. Local correlations between kinetic events of cation/vacancy ordering in framework
structures lead to ‘partial conservation’ of the order parameter. Mixing non-conserved and
conserved kinetic processes leads to a bifurcation behaviour with uniform states for mainly
non-conserved order parameter and periodic pattern formation if more than 1 out of 12 steps is
conserved. Possible correlations with experimentzl observations are discussed.

1. Introduction

Recent experimental studies have shown that the kinetic behaviour of cation ordering in
framework structures is correctly described by kinetic order parameters ¢ which have the
same structural meaning as their equilibrium equivalents. Furthermore, the driving force
of the kinetic process was identified as being virtually identical, beside some non-local
- parameters, to the excess Gibbs free energy G of the thermodynamm phase transition.
Typical examples are as follows

+ (i) Vacancy ordering in YBa2Cu3O—; ; where ¢ = {s} is the occupancy [1-3] of oxygen
on two competing lattice sites and H =}, J;;5;5;; transient tweed pattemns leading to stripe
formation were found experimentally [4-7] and via computer simulation [8-12], '_

" (ii) Al, Si ordering in- Na feldspar where 0oy describes the degree of Al, Si ordering.
Qqq ‘slaves’ another, structural order parameter  {od = order disorder). The rate law is
Qoa = Lexp(AG,/KT)3G(Qoss 0)/3Qoa  With AG, = AG] +¢Q?

where G is the equll;bnum excess Gibbs free energy of Qoa wsth relaxed ¢. Transient
tweed structures were observed [13].

(iii) Non-convergent ordering of Al and Si in K feIdspar The non-symmetry-breakmg
order parameter , follows

Q=1 exp(AGa/kT)aG/BQt - with G = —HQA+LA(T-T) Q+-...

No transient domain pattern was found [14].
_ (iv) Al, Mg ordering in omphacite, following

0 =Llexp(G,/kT)3G/3Q G, =Gl—eQ® G =31A(T-T)0%+1icCQf
- with no. transient domain pattern observed [15-16]. o
A similar connection between equilibrium behaviour and kinetic processes as in these
ordering processes is also expected beyond the relaxational Landau-Kalatmikov behaviour
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for displacive ferroelastics and ferroelectrics. The characteristic time scale in displacive
systems is the phonon time scale which makes the experimental observation of transient
states excessively difficult [17].

In the case of cation ordering in framework structures, it has been shown that the
essential distinction between various rate behaviours is related to the smallest step that an
order parameter {or the equivalent state variable) can make in order to reach equilibrium
{18-21]. Two extreme cases have been well documented: firstly the Ising medel in which
the step size is §@ = 1/N, where N is the number of spins in the system. In this case
the Glauber rate law for non-conserved order parameters and the Kawasaki rate law for
conserved order parameters are applicable [22-30]. Secondly, in ferroelastic systems, the
minimum step size is §Q <« 1/N. This situation also holds for m-state Potts models
(m > 3) [31]. In these cases, continuous rate laws of the type

Q=%(1_§M)£=_L(A)E§_ 63
£ gV 8@ ag

are a good approximation [8,17,31]. The new parameter introduced in this rate law is
& which measures the importance of the order parameter conservation. The two limiting
cases are easily identified. For & = O there is no conservation and we find a Landau-
Kalatnikov form of rate equation (note, however, that the rate laws are supposed to describe
essentially the full -dependence of the kinetic process even far from equilibrium whereas
the Landau-Kalatnikov equation only describes relaxations of states close to equilibrium
into the equilibrium state). We use here the term ‘Landau~Kalatmikov” in a formal sense
to indicate that the kinetic operator L{A) in (1) is simply the inverse time constant. For
& = & the order parameter is fully conserved and the rate law is in the lowest order of the
Cahn—Hilliard type [32-35].

From a purely mathematical viewpoint it is clear that one cannot apply perturbation
theory to describe the full range of & > 0 as a perturbation of &, = 0 because the perturbation
enters as a singular perturbation of derivatives higher than those contained in the starting
equation. Here we are interested in the physical picture of the breakdown of the perturbation
approach. : '

It is important for the following discussion to notice the different structure of the discrete
and continuous rate laws as far as the conservation behaviour is concerned. Only in the
case of the continuous rate law can the conservation behaviour be described by the kinetic
operator L(A) with a continuous scaling between the fully conserved to the fully non-
conserved limits. This paper is now concerned with the question: *What is the influence of
small contributions of conservation to an essentially non-conserved rate behaviour?’

Before we discuss possible answers to this question, let us clarify the term
‘conservation’. Conserved order parameters generally describe processes such as chemical
exsolution, spinodal decomposition etc. where the external constraint to the kinetic rate
law is the invariance of the chemical composition. In other words, any change of the order
parameter somewhere in the system has to be compensated by another change in the opposite
direction somewhere else. In the language of Ising models, changes of the spin coordinate
occur via flip-flop motion for conserved cases and via independent flip motions for non-
conserved cases. The same behaviour holds for continucus order parameters: changes of the
order parameter on a local scale can be correlated with changes in the opposite direction in
another part of the crystal (flip—flop) if some degree of conservation exists. One sees clearly
here the relative nature of such constraints: it is very likely that over small distances inside
the crystal such correlated flip-flop behaviour is relevant, whereas over large distances such
correlations die out. In these cases, the conservation behaviour is ‘partial’ and we wish to
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explore what consequences such partial conservation has for the macroscop:c rate behaviour

[29, 30]. :

- In view of the importance of partially conserved kinetic behaviotr for complex
structures, such as many minerals and other materials encountered in earth sciences and
material sciences, let us illustrate possible mechanisms with a typical example. Many
framework structures, such as feldspars and cordierite, contain as structural units simple
polyhedra which, in turn, consist-of primitive simplexes such as tetrahedra. These are the
smallest relevant units for structural phase transitions, kinetic processes and because of their
relative rigidity with respect to deformation and relaxation, they are often called ‘rigid units”.
The amalysis of structural phase transitions in terms of the response of these rigid units, i.e.
the ‘rigid unit modes’ has been one of the most fruitful recent developments in the field of
phase transitions {36-38]. Let us now consider a hexagonal framework of such tetrahedral
rigid units, e.g. similar to the cordierite structure (figure 1) [39-40]. The essential process
underlying the kinetics of Al, Si ordering in this structure is reldted to the distribution of Al
in such a way that two Al positions occupy two opposite comers of each hexagon and also
have the maximum distance between Al of different hexagons. The only way to achieve
this distribution is within an orthorhombic or monoclinic system, whereas the disordered
structure is hexagonal. In this example the smallest unit that is relevant for the kinetic
process is one hexagon with three states for the maximum Al, Al distance, six states for
distances with one Si between them and six states for neighbouring Al, Al arrangements.

- The smallest unit has, thus, fifteen states with three energy levels which split due to the
coupling with the surrounding lattice. This scenario leads to a phase transition which has
been described quantitatively in terms of Landau theory [41]. Let us now tumn to the kinetic
process. The great number of states [18, 19] and the coupling of the order parameter with
the lattice strain lead to the applicability of mean-field theories [1] and the rate equation
(1). If each of the elementary kinetic steps occurs independently, then the interaction with
the mean field may drive the system into equilibrium via a non-conserved rate behaviour
(& = 0). There are two obvious processes that may lead to strong correlations, however.
The first is that each breaking of a chemical bond in one hexagon can trigger a similar bond
breaking in the next hexagon within the constraints of the hexagonal matrix. This will lead
to a reshuffie of the Al positions such that the change in one hexagon is compensated in
another hexagon, so the total effect on the lattice is minimal. The second possible process
is that the bond breaking leads to a separation of Al from the hexagon. In this case, Al goes
into an interstitial site and diffuses through the structure. Recombination will occur with an
empty site which is not further away than the diffusion length. If this site was also vacated
by Al, nothing has changed. If, on the other hand, the site was vacated by Si, an effective
change of order parameter has occurred via an exchange reaction. This exchange reaction
is described by an order parameter flow with a conserved rate equation. This conserved
process is in excess of the underlying non-conserved kinetic process with the same effective
driving force. The total rate behaviour is partially conserved, therefore.

These two processes of coirelated bond breaking and conserved exchange reactions (and
possible other, yet unknown atomistic processes) lead to a mixture of conserved and non-
conserved kinetics, Their driving force may be identical and the most simple rate equation
describing such a scenario is given in (1),

~ 'We can now ‘sharpen up’ our original question and ask: ‘Can we treat the additional
correlations, i.e. the small admixtures of conservation, as a small perturbation of the
otherwise non-conserved rate law?" It is the purpose of this paper to argue that the answer
to this question is ‘no’. It will be shown that perturbation theory breaks down even for
rather small correlations which leads to a bifurcation between a regime with individual kink
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Figure 1. Sketch of the cordierite structure. The relevant kinetic
| ordering process relates to the distribution of two aluminium atoms
| over the six available tetrahedra positions per ring. The rings are
. inierconmecied via the T) tetrahedra. The orthorhombic ordering
requires maximum Al-Al distances in each ring and transtational
symmetry between the rings (Courtesy A Putnis, Cambridge).

domains and oscillatory pattern formation.

2. The rate equation

The general rate law in (1) can be written for small values of &, i.e. close to the non-
conserved limit, in lowest order and in an isotropic medium as [18]

0 =-1(1- {828 - #E27A%3GQ A=V @
For the excess Gibbs free energy, a Landau expression is assumed

G=1AQ0*+1BQ* +12IVQP 3)
Using the total derivatives of the order parameter, we find

0 = —1(1 - 1624 — hs£26%A%)(AQ + BQ® - gAQ). @)

In anisotropic media the Laplace operators A have, in general, directional dependent
prefactors because the ‘easy direction’ of the kink formation (last Laplacian) is not
necessarily identical with the direction of maximum correlation (e.g. the ‘easy’ diffusion
direction in the first Laplacian). These directional effects will be discussed in a separate
paper. Here we project the spatial dependence of Q on a one-dimensional model with

A = 3%/ar%. 5
Equation (4) is now renormalized with respect to the time variable

t' =t/(x]A]) )
and the order parameter

¢=0//-A/B  (A<0) 9

leading to
¢=0—¢ +(g/IAl — 1E2)Ad — ;8262 A% — (L825/1A1) A%
+ E20(A9) + 1820°Ag. @®
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- The term in the first bracket is the only prefactor that may change sign as a function of the
control parameter. In ferroelastic framework structures, the thickness of a domain wall is,
- besides a factor of the order unity, w = /g/|Al < 10 AatT T
The characteristic length &, represents the scaling length of the conservation and we
focus first on the limit of & < w. In this case, the prefactor is (w + (l/«/— ) (w —
(1/\/— )E;) > 0. Rescaling the length as

| Cx=r/(w? - LEH : B )
* we find the rescaled rate equatlon _ - :
' b =~ ¢+ — Yburax + 802 + €% 10y
with - -
| y = [Lu/ (w? = 1637 + e/ (w? — 1622 > 0 (1
and ) - -
| s=8/(w ~&) > €=/ —£) >0 ¢,»——¢ (2)

Close to a second-order phase transition, w diverges as |T-— T,/ and y decays as T, —T.
The terms representing the partial conservation disappear at T and the conservation becomes
thermodyna:mcally irrelevant, At T < T, we estimate w = 10 A, (1//6)& =5 A, and
¥ = 3. The expected numerical values of ¥ are for these length scales between zero at T;
and 7 at low temperatures. The maxnnal values of § and ¢ are, nsing the same estimates,
2 and 1, respectively.”

3. Analytical solutions and marginal stabilities

The limiting case y = € = § = 0 has a relevant solution for boundary conditions ¢ = 1 at
x=oc and.¢ = —1 at x = —oo kinks (¢ == tanh x) representing twin boundaries [42-46].
The growth of the stable state ¢ = 1 into matrix of unstable ¢ = 0 material under isothermal
* conditions is also described by kinks. Their velocity is determined by the marginal stability
© of the progressing front with respect to fluctuations [47-52]. This marginal velocity is v* =
2 for (10). In units of the Landan potent:al v= (2/r)(—gA)V2 which decay with exponent
‘ for T — T..

For small values of ¢, this situation will not change {note ¢ = 0 at the leadmg edge
of the propagating wavefront). The dispersion is identical with that of the well-studied
extended Fisher—Kolmogorov (EFK) equation [53-54] namely

Re(w) = 14+ &2 — k2 - y(k"' — 6k2k2 + k) o (13)
-where & = Re(k) ‘and k= Im(k) _

- The maximum growth rate is determined by the maximum of Re(w) with respect to
ki at k= k! for marginal stability of the wavefront. For y < 12, one finds &; = 0, so
onty mdlwdual kinks will propagate. In this case, the partial conservation does change
the effective parameters of the kinetic equation but does not modify the ‘essential physical
behaviour, This situation changes dramatically when y approaches and increases further. .

For y > '2, the individual kinks are replaced by nearly penodlc kink-antikink pattem _
(ﬁgure 2). Their repetition Iength A is approximately

= Gn/3)(2y/4)"Q+ 24y ~ A[12(y - ) ~ A] (19
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Figure 2. Snapshots of a moving wavefront (from right to left). On the rus the initial condition
is the uniform state with the equilibrium order parameter Qpq. This phase grows into the unstable
phase with = 0 via pattern formation. The growth is described by (10} with (a) y = 0.3 and
d=e=0,(0)8=15 ¢e=73and () § =3, ¢ = 6 The increase of § and ¢ leads to a rounding
of edges but has little influence on the general pattern formation.

where

A=(T+240)" -3, (15)
The repetition length diverges at the bifurcation point [53] as

no (y = &) (16)

Aty » Tli" the repetition length depends only weakly on the numerical value of y with
A=250Aaty = % and the parameters estimated as given before.

At this point we notice that the transient state produced similar periodic patierns for
# large number of functions 8G(¢)/0¢ [55]. In the case considered above, a sample was
quenched from ¢ = 0 to ¢ = 1. Experimentally, a similar pattern also evokes for shock
heating from ¢ = 1 to ¢ < 1, although a direct comparison with experiment is difficult
because we have so far ignored the directional dependences of the prefactors of the two
A-operators. A particular effect in ferroelastic materials is that one finds two orthogonal
propagation directions and, consequently, the formation of tweed pattern rather than periodic
twins. In figure 3 two typical examples are shown. A crystal of Na feldspar was shock
heated and the tweed microstructure shown in figure 3(a) with A = 200 A occurs for all
intermediate times (0.2 < @ < 0.8). In figure 3(b) the similar pattern for quenched Mg
cordierite is shown. In both examples, the pattern formation is due to Al, Si ordering.

4. Cases with &; similar to and larger than w

So far the discussion has been concerned with the limiting case of very weak conservation.
For cases-where § is still so small that the series expansion of sinh(£k)/§k is a good
approximation one can expect many conserved steps to occur inside the conservation volume
defined by &. In this case the condition w > &; is no longer fulfilled. The sign of the first
Laplacian then changes to negative or the term disappears for w = (1/v/6)&.

In this special case {56-57] the propagating wavefront follows

¢’; =¢— ¢3 = ¥ Prexx + 5*¢’¢§ + E*d{fx V (17)
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Figure 3. Tweed microstructures as transient patterns during the cowse of a kinetic cation
(dis}ordering experiment: () Na feldspar, Al Si dlsorden.ng, (&) cordierite, Al,S8i ordenng
{Courtesy A Putnis, Cambndge)

with . . : . ‘ ‘ . .
Equation (17) is similar to those describing propagation of instabilities in the direction
parallel to the long roll axis in Rayleigh-Bérnard cells. These fronts also produce kinks so
that the microstructure consists again of a kink-antikink pattern.
The non-singular case of a negative term in the second order spatial derivative is similar
to the dynamics transient pattern formation in liquid crystals, e.g. the Fréedericksz, instability
" [58]. In order to illustrate the.close connection, let us start from the kinetic equation to the

field ¢(r) = [n(r), v(r), u(r)] where n is the usual director field, v is the veloc1ty and u
‘describes the posmon of the molecules. The kinetic equation is written as

i = L,j(cp) 3G/ogs+n;  i=1,....9. (19)

The last term is Langevin noise and L;; is the Kinetic operator In nematic liquid
crystals, the kinetic operator does not only describe the dissipation of the order parameters
but also the non-dissipative coupling between the components of ¢. The diagonal terms are
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dissipative, the non-diagonal terms describe the coupling between several order parameters.
The equivalence to the partial conservation in the original equation (1) is now introduced
via the non-diagonal coupling terms, whereas the uncoupled equations would not describe
the pattern formation at all. Translating this phenomenon into the language of structural
phase transitions, it means that the local kinetic correlations, which are essential for the
partial conservation, are not necessarily brought about by a mechanism which is related
to the driving order parameter itself, but is due (in this model) to the coupling to another
degree of freedom which, per se, is not involved in the mechanism of the equilibrium phase
transition.

It has been shown that the kinetic equation (19) can be dlagonahzed in terms of the
angular dependence of n only:

n.(x, z) = cos(¢)(x, z) ny(x,z) =sin(@}(x,z) ~  n,=0. (20

Transforming ¢ into Fourier space, with the amplitude &, (£), the equwalent kinetic equation
of 6, () is in lowest order

6,0) = (1/9)[a - 82|05, + 70,0 1)
The structure factor with anchoring boundary conditions in Iowest order is
= {05, (1), 04, (1)} : (22)
with the time dependence
= @/P)[a - bgl]Ssu O+ @psT/V. (23)
The kinetic prefactor depends itself on the wavevector via
p=y—c/ln-m0?)  Q@=4:d} 24)

which leads for realistic values of the viscosity parameters and early stages of the rate
equation (12) with small Q-values to

1/7 = (/)1 —cQ¥yna) = L(D). 25)

The resuits for strong magnetic fields # (i.e. quenching deep into the low-symmetry
phase) have been analysed numerically [60]. It was found that the uniform state for the
initial conditions decays after the mean first passage time into a pattern with a well defined
wavevector close to the maximum of the dispersion relation.

So far we have considered the pattern formation. As transient states, these patterns
disappear when the system approaches equilibrium. The main question now concemns the
decay channels for the pattern destruction. In case of fully conserved order parameters, this
problem relates to coarsening. For non-conserved order parameters the destruction of twin
boundaries is essentially due to the formation of junctions between walls and the pulling back
of needle-shaped domains [42]. It appears that the driving mechanism for the destruction
of tweed pattern is also the bending of domain walls around junctions and the subsequent
retraction of bend walls (e.g. as needle tips) [42]. None of these atomistic processes is
readily described by the 1D kinetic rate equations discussed so far. For & < w, the pattern
appears to be numerically stable although exporentially small wall-wall interactions lead
to the formation of ripple states [53,61].

The more straighiforward pattemn with & < w has been shown to be unstable with
logarithmic increase of the (A} o ln ¢ mean value of the repetition length [39,62,63).
This decay lay is dependent on long-distance exponential interaction between walls. Such
interactions are shown to exist dynamically between Fréedericksz walls [51], and their
existence is also generally assumed for structural twin walls [52] although their physical
origin is less than clear.
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